Intermediate Wheatgrass: Food Science Work to Develop Applications

Food Science Groups:
- Mirko Bunzel (mirko.bunzel@kit.edu)
- Baraem (Pam) Ismail (bismailm@umn.edu)
- Devin Peterson (peterson.892@osu.edu)
- Tonya Schoenfuss (tschoenf@umn.edu)
- Koushik Seetharaman Lab (Dr. Alessandra Marti amarti@umn.edu)
- George Annor Lab (gannor@umn.edu)

University of Minnesota
Driven to Discover
What is Food Science and Why are We Working on IWG?

Food science is the study of the physical, biological, and chemical makeup of food; and the concepts underlying food processing. **Food technology** is the application of food science to the selection, preservation, processing, packaging, distribution, and use of safe food.

To Use Any Food Ingredient on an Industry Scale, we need to understand:

- **Functionality**
 - how do the protein and starch behave when we cook or bake with IWG?
 - Can we modify this through processing? Breeding for certain traits?
- **Storage stability**
 - What impacts shelf-life? Lipids? Enzymes?
 - Can we control this through processing?
- **Flavor**
 - How does it compare to other grains and products we know?
 - What is unique about it?
- **Nutrients**
 - What is its composition?
 - Are the unique components? Are there any anti-nutritional factors?
Benefits and Challenges of IWG - Composition of IWG Compared to Wheat

Composition IWG (average of 13 breeding populations)
- Carbohydrates: 71.5%
- Protein: 21.6%
- Ash: 2.7%
- Fat: 4.2%

Composition Whole Wheat (Hard red spring)
- Carbohydrates: 83.0%
- Protein: 12.0%
- Ash: 1.8%
- Fat: 3.1%

IWG (2004) 3.9 g/1000 seeds
More protein

Intermediate Wheatgrass (2015)
- Carbohydrate: 75.8%
- Protein: 16.4%
- Fat: 5.04%
- Ash: 2.30%

IWG (2015) 5.1 g/1000 seeds
More carbohydrates

HRW 26 g/1000 seeds
Importance of Protein & Starch for Product Functionality

- Proteins can be used to hold gas in baked goods (bread & popovers). Some products you want “strong” gluten, some you don’t (think bread flour vs. all-purpose flour).

- Starch is important for adding viscosity and to set products like cake.
- Also source of fermentable sugars.
Gluten

Gluten ELISA test strip confirming presence of gluten proteins in IWG

Protein patterns of wheat/IWG glutens by SDS-PAGE. Lane 1: protein marker; 2: whole wheat flour gluten; 3: Bulk IWG (Kernza); 4: IWG LI-1; 5: IWG LI-2; 6: IWG LI-3; 7: IWG LI-4; 8: IWG LI-5A; 9: IWG LI-5B

Just because IWG does not “form gluten”, and has some different proteins, does not mean it is not a wheat allergen. It is.
Challenge for Whole IWG flour in products that rely on protein to hold gas.

- Refined Bread Flour
- Whole Wheat Bread Flour
- Whole IWG Flour
Farinogram of Rouseau, MN grown IWG vs. Hard Red Wheat with various amounts of bran

Removing bran does not improve the gluten forming abilities
Extensibility of IWG vs. Hard Red Wheat with various amounts of bran

<table>
<thead>
<tr>
<th>Bran (%)</th>
<th>Resistance to Extension (g)</th>
<th>Total Extensibility (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rosemount</td>
<td>Rousseau</td>
</tr>
<tr>
<td>0</td>
<td>22.33</td>
<td>32.86</td>
</tr>
<tr>
<td>25</td>
<td>19.2</td>
<td>27.25</td>
</tr>
<tr>
<td>50</td>
<td>17.43</td>
<td>24.96</td>
</tr>
<tr>
<td>75</td>
<td>15.25</td>
<td>22.95</td>
</tr>
<tr>
<td>100</td>
<td>14.3</td>
<td>19.56</td>
</tr>
</tbody>
</table>
IWG Flour Refining

Changes in protein secondary structure determined by ATR-FTIR

Complete refinement does not lead to the optimum ratio of β-turns to β-sheets.

75%_Bran_IWG has the best sheets/turns ratio suggesting a good compromise between dough extensibility and elasticity.
Ongoing work on strategies to improve functionality

• Continue looking at refinement (have done cookies & crackers, bread in progress)
• Dough conditioners
 – oxidizers (citric acid)
 – enzymes (xylanases, alpha amylase, transglutaminase)
Maybe Blending Isn’t So Bad?
Work by A. Marti, Jayne E. Bock, Maria Ambrogina Pagani, Koushik Seetharaman

Dough made at 70% Water Absorption
Blending whole grain IWG with refined HRW

Standard AACC method: AACC 10-05.01

Bread volume (cm³)

100% Wheat 50% Wheat 25% Wheat

Standard AACC method: AACC 74-09.01

Bread Firmness (N)

100% Wheat 50% Wheat 25% Wheat 100% IWG
IWG’s Carbohydrates

Composition IWG (average of 13 breeding populations)
- Carbohydrates, 71.5%
- Protein, 21.6%
- Ash, 2.7%
- Fat, 4.2%

Composition Whole Wheat (Hard red spring)
- Carbohydrates, 83.0%
- Protein, 12.0%
- Ash, 1.8%
- Fat, 3.1%

<table>
<thead>
<tr>
<th></th>
<th>% Fiber</th>
<th>% Starch</th>
</tr>
</thead>
<tbody>
<tr>
<td>IWG</td>
<td>15</td>
<td>67.4</td>
</tr>
<tr>
<td>Whole Wheat</td>
<td>40</td>
<td>60</td>
</tr>
</tbody>
</table>

More bran!

<table>
<thead>
<tr>
<th>Milling yield</th>
<th>% Bran</th>
<th>% Refined Flour</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>40</td>
<td>41</td>
</tr>
<tr>
<td>41</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>
Starch Pasting Profile

MVAG of blends with hard wheat
Less starch, lower peak viscosity
How can we improve IWG performance in cakes?
Used gluten-free strategies

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>White Wheat flour</td>
<td>IWG + Water</td>
<td>IWG + Water + albumin + xanthan</td>
<td>IWG + Water + albumin + xanthan + sorghum flour + arrowroot starch + potato starch</td>
<td>IWG + Water + albumin + xanthan + rice flour + potato starch</td>
<td>IWG + Water + albumin + xanthan + rice flour</td>
<td>IWG ++ Water + albumin + xanthan + rice flour</td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Albumin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Baking Powder</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sugar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nonfat Dried Milk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Salt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shortening</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Things that improved Volume and Texture

- more water
- more egg white
- Xanthan gum helped with volume
- Different starches had different effects

Most preferred formula:
1.75X the water of control (moister, less gritty)
2x the albumin
+ rice flour
+ xanthan gum
Flavor

Toasted
- 2-acetyl-2-thiazoline
- 2-acetylpurine

Roasted
- 1-hexanol
- 2-phenylethanol
- Ethyl nonanoate
- 2-ethyl-3,5-dimethylpyrazine
- 2-ethyl-3,6-dimethylpyrazine

Rated higher in Whole Wheat
- Raisin: 2-methoxy-4-vinylphenol, salicylaldehyde
- Green: (E,Z)-2,6-nonadienal, 1-octen-3-ol, ethyl octanoate
- Bran: 1-hexanol, 2-phenylethanol, ethyl nonanoate

Rated higher in IWG
Great Nutritional Story!

<table>
<thead>
<tr>
<th>IWG (Avg of 13 breeding populations)</th>
<th>Whole Wheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>ash 3%</td>
<td>fat 3%</td>
</tr>
<tr>
<td>fat 4%</td>
<td>protein 12%</td>
</tr>
<tr>
<td>protein 22%</td>
<td>ash 2%</td>
</tr>
<tr>
<td>carbs 71%</td>
<td>83%</td>
</tr>
</tbody>
</table>

more bran!

<table>
<thead>
<tr>
<th>% Fiber</th>
<th>21.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Starch</td>
<td>47.7</td>
</tr>
<tr>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>67.4</td>
</tr>
</tbody>
</table>
Dietary fiber (Whole grain flours, dry basis)
Storage Stability

- Main fatty acids: linoleic, oleic and palmitic acid (similar to wheat)
- Higher in carotenoids than wheat

<table>
<thead>
<tr>
<th></th>
<th>HRW</th>
<th>IWG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lipoxygenase Activity</td>
<td>5.36*</td>
<td>5.00</td>
</tr>
<tr>
<td>Lipase Activity</td>
<td>1.84</td>
<td>2.79*</td>
</tr>
</tbody>
</table>

Heat treatment of groats/flour during processing may be used to inactivate problematic enzymes.
Results so far: Oxidative rancidity in IWG did not increase over accelerated storage compared to HRW, while hydrolytic rancidity increased slightly.
Factors Influencing Storage Stability: Antioxidant Content & Activity

<table>
<thead>
<tr>
<th>Sample</th>
<th>Hydroxycinnamic Acids (µg/g flour)</th>
<th>Carotenoids (mg/100g flour)</th>
<th>Antioxidant Activity (TEᵇ/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ferulic Acid</td>
<td>p-Coumaric Acid</td>
<td>Sinapic Acid</td>
</tr>
<tr>
<td>IWG</td>
<td>813*</td>
<td>20.4*</td>
<td>76.4*</td>
</tr>
<tr>
<td>HRW</td>
<td>506</td>
<td>7.00</td>
<td>50.0</td>
</tr>
</tbody>
</table>
Antioxidant activity (DPPH)

IWG populations

Trolox equivalents/g

2676 TE/g

1498 TE/g

1174 TE/g

C3-3486 C3-448 C3-214 Manifest Manska Oahe HRW
Suggested Future Food Science Studies

- Processing
 - milling
 - tempering (time, temp)
 - type of mill
 - other processes
 - extrusion
 - flaking
 - puffing

- Chemistry
 - starch damage
 - effect of aging
 - fermentation

- Sensory characterization of flour and products at different refinement levels
 - Trained panels and consumer panels
Funding and Collaborators

- Initiative for Renewable Energy and the Environment (IREE)
- Forever Green Initiative (led by Dr. Donald Wyse)
- Minnesota Department of Agriculture
- The Land Institute

Collaborators:
- Dr. James Anderson and his research group at the University of Minnesota Agronomy/Plant Genetics Department
- Dr. Lee DeHaan (The Land Institute)
- North Dakota State University Wheat Quality and Carbohydrate Laboratory under Dr. Senay Simsek
- Dr. Alexandra Marti, University of Milan, Food Science, Agricultural Plant Science, Agronomy and Adjunct faculty member at UMN
- USDA-ARS Cereal Crops Research Unit under Dr. Jae-Bom Ohm